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’R?dical Polymerization of Styrene in the Presence of
Nitroxyl Radicals. Experiments and Simulations.

Dorota Greszta, Krzysztof Matyjaszewski®, Carnegie Mellon University,
4400 Fl[th Ave., Pittsburgh, PA 5213
Duane Priddy, Dow Plastics, Dow Chemicals Co., Midland, MI 48667

Radical polymerization, in spite of its commercial importance, has
been very difficult to conuol at a level attained for anionic and cationic
polymeqzaqon. A rational design and approach to controlled/living radical
pol_ymcnuuon based on the reversible formation of growing radicals from
various types of dormant species, has been presented only very recentlyl.
Useofa stable radical TEMPO (2,2,6,6,-terramethyl-1-piperidinyl -oxy) and
corresponding alkoxyamines as moderators for radical polymerization of
styrenes has been probably most extensively studied?-7 but the exact
mechanism and reasons for the prepararion of well defined polymers are still
obscure. The objective of this paper is to summarize experimental data
obtained in different but comparable systems and provide a comprehensive
view on the polymerization of styrene in the presence of TEMPO. By using
computer simulations, effects of various reactions occurring in this system,
including self-initiation, termination, wansfer, decomposition of alkoxy-
amunes, as well as dynamics of exchange on kinetics, molecular weights and
polydxspgmucs are analyzed.

Simulations were performed using program PREDICI which is based
on a adaptive Rothe method$ as a new numerical strategy for time
discretization. It uses a discrete Galerkin h-p method to represent chain
length distribution and allows to follow concentration of all substrates, low
anq high molecular weight products and intermediates as well as molecular
weights and the corresponding distributions of all types of macromolecules,

) The simplest system for the TEMPO mediated styrene polymerization
includes styrene and the corresponding TEMPO adduct, 2.2,6,6-teramethyl-
}-(ll g’ehcnylemoxy)plpcﬁdinc, MT. The basic reactions in such system
include:

* homolytic cleavage of the adduct:

k,

i
MT 3T+
_ & M)
+ initiation and subsequent propagation:

Mt+M-j’_> Plt (2)

k
Pi* + M —E’Pm-l* (3)

To sxmphfy the analysis it is assumed that kp1=kpn=kp. Values of
propagarion rate constants are available in literature and they are kp=2-103
mol-1-L-s-1ar 1200C 9.

* reversible deactivation of active chains:

* *
P, +TT P,,T(4)

+ termination with a rate constant k;=107 mol-1-L-s-1 at 120°C 10

Po* + Pp* -k'-> Prm (5)
« thermal initiation, presumably by formation of unsaturated dimers}!

M+ M&5p (g)

The rate of thermal formation of dimer has been determined by using various
inhibitors. By extrapolation of the data available in literarure12.13 the rate of
dimer formation at 120°C was estimated 10 be approximately 1-10-6mol-L-1.
From this value kgim=1-10-8 mol-1-L-s-1 was calculated.
The actual initiation probably occurs via hydrogen atom mansfer to monomer
as shown in Equation7.

D+ ML pr 4 \pe (7)
There is no literature data about this step of thermal initiation. In order to fit
the experimental kinetic data kj'= 3-10-8 mol-1-Ls-1 was used. Addidonally it
was assumed that the dimer radical D* reacts with monomer with the same
rate constant as monomeric radical.

Although the simulations with the model based on equations 1-7 fit
the experimental kinetic data very well, the calculated molecular weights were
100 times too high. In order to fit the molecular weights, a transfer to
monomer was added to the model. However, it did not result in a significant

decrease of molecular weights (at 120 °C Cirm=1.4-104 14, k)=0.28 mol-
LI, s-1).

P,,‘+M-kﬂbpn+M‘ (8)

Because most polymerizations were studied only to moderate conversions
(<70%), transfer to polymer was not taken into account in these simulation.
When a transfer to the Mayo dimer (Eq.9) was incorporated into the
model, 2 good agreement between observed and calculated mojecular weights
was obtained. The optimum fit was achieved for kyp=50 mol-1-L-s-1. This
relatively large value is justified as suggested by Olaj and coworkers!$.

k
D +P*,,—"D>D*+Pn 9)

It has been reported that the adduct spontaneously thermally
decomposes to styrene and hydroxylamine16 (Eq.10). Macromolecular
species should decompose with the similar rate constant Kdecomp=3-10-5s-1 at
120 °C (Eq.11).

MT Sesp e TH (10)

PT kMP: +TH (11)

Kinetics of polymerization

Figure 1 illustrates a simulated kinetics of thermal self-initiated
polymerization of styrene, together with a simulated kinetics of
polymerization in the presence of 2,2,6,6-tetramethyl-1-(1-phenylethoxy)
piperidine and with experimental data from literature on polymerization
initiated by AIBN or BPO and TEMPO or its adduct at 120 oC.
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Figure 1. Kinetic plots for the simulated polymerization of styrene in the presence of
adduct (0.012M] in bulk at 1200C with variable kinetics and thermodynamics of exchange,
simulated thermal polymerization of styrene and experimentai data for different adduct
concentrations: a: K=1-109, kg=1.109, k,=1-109; h: K=1-10-10, k4=1-107, k,=1-10-3: ¢
K=1-10-10, k4=1-10%, k,=1-10-1; d: K=1-10-11, ky=1-109, k,=1-10-2; g: thermal
polymerization: exp. data: X {adduct]=0.012M: + fadduct]=0.009M: A [adduct}=0.003M17;
© {adduct]=0M: O [adduct}= 0.010M!3; + (AIBN]= {TEMPO]=0.010M5; ® [BPO}=
[TEMPO] =0.010M3.19; (K is in mol/L, k is in mol-1-L-s-! and kg in 51
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The best fit to experimental kinetic data, was found for values of the
equilibrium constant K=k,/kq<10-10mol/L, preferably K=10-11mol/L.
Apparently the dynamics of exchange has no effect on kinetics. Using either
upper limit of the rate constants of deactivation kg=109mol-!-L-s- or 100
times lower values kg=107mol-1-L-s-1 (and correspondingly k,=10-1s-1 and
10-3s-1) has no effect on the rate of monomer consumption. K=10-10 mol/L
is the upper limit for the equilibrium constant and lower values such as 10-11
mol/L also fit the observed kinetics.

Equilibrium TEMPO concentrations

The available literature data and also estimates by UV and EPR
indicate that approximately I to 10% of TEMPO (based on the initial
alkoxyamine) is formed in the reactionS.20. The simulations showed that
such high concentration of TEMPO is possible only in a system with the
equilibrium constant K not lower than 10-10 mol/L ‘at 1200C. Thus taking
this into account as well as the results from kinetics simulations, the

equilibrium constant K should be =10-10 mol/L.




. wei
conversion,
No transfer, no decomposition .
Figure 2 illustrates the evolution of molecular weights with
conversion ror the simplest systems without transfer and decomposition with
variable exchange rates but constant value K=10-10 mol/L. It seems that
some of the reported data agree relatively well with simuladons if the rate of
actvation is larger than ky>10-3 s-1 (kg>107 mol-1-L-s-1). Too high inital
molecular weight are predicted for smaller values of the exchange rate
constants.
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Figure 2. Simulaied dependence of number average degree of polymerization on
conversion in systems with variable kinetics and equilibrium constant K=1-10-19mol/L: 3:
kg=1:10%, ky=1-10-1; b: ky=1-108, k,=1-10-2; ¢: ky=1-107. k,=1-10-3. Solid points
correspond to experimental data (c.f. fig.1) ( kq is in mol-1-L-s" and kg in s-1)

Figure 3 depicts variation of polydispersities with conversion for
various values of rate constants of activation and deactivation. The initial best
fit was found for kq=3-107 mol-1-L-s-1. a value which is substantially lower
than the expected diffusion controlled values k=109 mol-1-L-s-1. This can be
ascribed either to higher viscosity of the system or to steric effects decreasing
the reactvity of a macroradical. In systems with slow exchange a
monotonous decrease of polydispersity with conversion is expected. The
observed polydispersities increase at higher conversions. Thus some
additional side reactions contribute to the broadening of molecular weight
distribution.
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F igure 3. Simulated dependence of molecular weight distributions on conversion in
sysiems with variable kinetics and equilibrium constant K=1-10-10mot/L: a: kd=1-109
ka=1-101; b: ke=3-107, ka=3-10-3: g: ke=1.107, ka=1-10-3 (kg is in mol-1-L-s-1 and ka in
s-1). Solid points correspond to experimental data (c.f. Fig.1).

Transfer to monomer and decomposition of alkoxyamines

Figure 4 demonstrates the effect of thermal self-initation, wansfer to
monomer and decomposition of alkoxyamines on molecular weight
distribution. Both self-initiation and transfer lead to relatively small increase
of polydispersities, lower than experimentally observed. However, larger,
and much closer to those observed experimentally, polydispersities are
predicted by taking into account the decomposition reaction (eq. 10 and 11).

In summary, it seems that the values of rates constants used in this
work lead to successful simulation of observed rates, molecular weights and
polydispersides of obtained of polymers and TEMPO concenmrations. Thus,
the apparently simple polymerization of styrene moderated by TEMPO
adducts includes several other reactions: self-initiation, termination, transfer
and decomposition of atkoxyamines.
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Figure 4. Effect of various side reactions on simulated dependence of molecular weights
distributions on conversion in systems with K=1-10-19mol/L, kg=1-109mol-1-L-s-1,
ko=1-10-1s-1; a: exchange only; h: thermal initiation. ¢: transfer to monomer; d:
decomposition of alkoxyamine; g: all side reactions combined. Solid points correspond to
experimental data (c.f. Fig.1). .

TEMPO moderated polymerization of styrene proceeds with the very
low stationary concentration of radicals generated by homolytic cleavage of
alkoxyamines. Polymerization rates in the absence and in the presence of
variable concentrations of alkoxyamines are nearly the same, indicating that
majority of radicals are produced by self initiation. The equilibrium constant
of reversible cleavage of alkoxyamines at 1200C is K=10-10mol/L as
estimated from kinetics and concentration of TEMPO observed in the
polymerization. Rate constant of activation (cleavage) of alkoxyamines is in
the range of kg=~3-.10-3 s1. Correspondingly, rate constant of deactivation
(reaction of growing radicals with TEMPO) is in the range of k¢=3-107 mol-
1-L-s-1. In addition to self-initiation, propagaton, exchange and termination,
other side reactions such as transfer and decomposition of alkoxyamines are

also present.
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